High-throughput solution processing of large-scale graphene.

نویسندگان

  • Vincent C Tung
  • Matthew J Allen
  • Yang Yang
  • Richard B Kaner
چکیده

The electronic properties of graphene, such as high charge carrier concentrations and mobilities, make it a promising candidate for next-generation nanoelectronic devices. In particular, electrons and holes can undergo ballistic transport on the sub-micrometre scale in graphene and do not suffer from the scale limitations of current MOSFET technologies. However, it is still difficult to produce single-layer samples of graphene and bulk processing has not yet been achieved, despite strenuous efforts to develop a scalable production method. Here, we report a versatile solution-based process for the large-scale production of single-layer chemically converted graphene over the entire area of a silicon/SiO(2) wafer. By dispersing graphite oxide paper in pure hydrazine we were able to remove oxygen functionalities and restore the planar geometry of the single sheets. The chemically converted graphene sheets that were produced have the largest area reported to date (up to 20 x 40 microm), making them far easier to process. Field-effect devices have been fabricated by conventional photolithography, displaying currents that are three orders of magnitude higher than previously reported for chemically produced graphene. The size of these sheets enables a wide range of characterization techniques, including optical microscopy, scanning electron microscopy and atomic force microscopy, to be performed on the same specimen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Scale Automated Identification and Quality Control of Exfoliated and CVD Graphene via Image Processing Technique

Graphene, a monolayer of carbon atoms, is a high-interest material in the research community and semiconductor industry due to its extraordinary electronic, thermal, and mechanical properties. Graphene layer identification is very important since its intrinsic properties change drastically between each 0.34-nm thick layer. Current methods of identification rely on restrictive small-area microsc...

متن کامل

High-throughput large-area automated identification and quality control of graphene and few-layer graphene films.

Practical applications of graphene require a reliable high-throughput method of graphene identification and quality control, which can be used for large-scale substrates and wafers. We have proposed and experimentally tested a fast and fully automated approach for determining the number of atomic planes in graphene samples. The procedure allows for in situ identification of the borders of the r...

متن کامل

Material processing of chemically modified graphene: some challenges and solutions.

Graphene-based sheets show promise for a variety of potential applications, and researchers in many scientific disciplines are interested in these materials. Although researchers have developed many ways of generating single atomic layer carbon sheets, chemical exfoliation of graphite powders to graphene oxide (GO) sheets followed by deoxygenation to form chemically modified graphene (CMG) offe...

متن کامل

Seeing graphene-based sheets

Graphene is two-dimensional nanomaterial consisting of a single layer of sp2 network of carbon atoms (Fig. 1a)1. While the thickness of a graphene sheet is on the order of a single atomic unit, its lateral dimension can approach up to tens of microns. Graphene and its derivatives such as graphene oxide (GO) (Fig. 1b), and reduced graphene oxide (r-GO, a.k.a. chemically modified graphene) (Fig. ...

متن کامل

Small Scale Effects on the Large Amplitude Nonlinear Vibrations of Multilayer Functionally Graded Composite Nanobeams Reinforced with Graphene-Nanoplatelets

   The main purpose of the present investigation is to analyze more comprehensively the size-dependent nonlinear free vibration response of multilayer functionally graded graphene platelet-reinforced composite (GPLRC) nanobeams. As a consequence, both of the hardening stiffness and softening stiffness of size effect are taken into consideration by implementation of the nonlocal str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2009